
Game Engine

Design Approach
● Entity-Component-System paradigm – operates on

parts rather than a whole object
● Custom system scheduler for optimized updates
● Modularized and scalable code
● “Don’t build functionality from scratch!”

Introduction
● Existing game engines DO NOT support Non-Euclidean geometric models
● “Non-Euclidean” in industry commonly uses portals and disappearing rooms instead of a Non-Euclidean Space

We created a custom game engine and video game using custom Non-Euclidean hyperbolic shaders.

Context
Users
● All types of gamers:

○ Casual and hardcore
● Game developers
● Researchers

Use Cases:
● Niche game development
● Non-Euclidean shader modeling
● Simulations

Requirements
Engine:
● Smooth gameplay on

low-end hardware
● Intuitive API for game

developers
● Support game design goals

Game Design:
● Emphasize Non-Euclidean shaders
● Enjoyable and interesting game

mechanics
● Engine compatibility

Game Design

Tasman Grinnell, Ben Johnson, Josh Deaton, Cory Roth, Zach Rapoza, Spencer Thiele, Lincoln Kness Group: sdmay25-37

Faculty Advisor: Dr. Joseph Zambreno Client: Josh Deaton

Lights Out
Non-Euclidean Game Engine and Video Game

Technical Details
● Written in C++ with OpenGL GLSL shaders
● CMake and Ninja – building/compiling tools
● External libraries – “don’t reinvent the wheel!”
● Custom Non-Euclidean shaders

Figure 4: High-Level overview of game engine operation

What is Hyperbolic Geometry?
A world that exists on a hyperboloid, but projected onto a
2-dimensional disk.

Figure 1 (top left): Hyperbolic
space projection on a 2D disk

Figure 2 (top right): Euclidean
vs hyperbolic square tiling

sdmay25-37.sd.ece.iastate.edu

Testing
● Manual testing and unit tests – functionality focus
● Integrating tilemaps with shaders

○ Identify performance issues
○ Visually confirm sprite warping

Figure 5: Tile maps showcasing hyperbolic shaders and warping on a
sprite with solid color tiles

Toolchain
● Figma/Docs → Brainstorming, scheduling (maybe toss)
● Unity (C#) → Prototyping and scene management

○ Testing while developing
● Git/Github → Version control
● Itch.io → Build the demo for playtesting
● Non-euclidean engine → port to custom engine

Play Testing - Itch.io Build
Issues
● Enemies were easily

avoidable
● Interaction were unclear
● Lots of accidental inputs

Potential Solution
● Randomize the enemy

spawns
● Add visual indicators
● Separate input buttons

State of the Game

● Goal: Find your missing grandfather
● Primary mechanics – Planting, trading, and exploring

Figure 6-7: Farm and Forest Scenes

Engine-Game Integration
● Early porting process
● Modified the forest scene to be

more mazelike
Current issue: converting tile maps
from the Unity prototype to custom
tile map solution.

Existing conversions are time intensive
(manual creation) or memory
intensive (python scripting). Figure 8: Integrated Forest/Maze

Figure 3 (bottom right): Two-sheet
hyperboloid

