
sdmay25-37

3 Project Plan
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We are adopting a hybrid of both waterfall and agile approaches. The overarching method is a
waterfall approach for the high-level structure of the timeline and task composition but the specific task
completion will use an agile approach. The main reason this structure was chosen is because of the time
constraint as this was for a senior design class. We only have 2 semesters of time to have some working final
deliverables. Because of this constraint, we need a more rigid schedule to ensure we keep up with timelines
to meet this deadline. This rigid schedule tends to fall under a waterfall approach. Another reason we chose
this is the dependency of tasks. Specific tasks depend on the previous task being completed, so we cannot
take a more agile approach and iteratively improve if we don’t have anything to improve upon. Once we have
a semi-working video game prototype, we can take a more iterative approach, tasks, and problems. This
means that over the course of the year, we will shift from a heavy focus on waterfall to a more focus on the
agile approach. Finally, we chose an agile approach to completing tasks because it allows us to make the
product we want. As a student-proposed project, our client is our student, which gives us regular client
feedback and allows us to change the project's direction based on what we, as a group, find more interesting
to do. We are more flexible with the requirements and can make decisions as a group.

We are currently using GitHub and GitHub issues to list issues we have while currently on a task
and are using it as a tool to assign smaller tasks to members. Our significant tasks and schedules are
maintained in our shared drive folder in Google Sheets. We keep the significant tasks in the sheets because
these tasks and deadlines are hopefully not going to change often. We keep track of smaller tasks on GitHub
because it is easier to update deadlines and issues we are having when taking more iterative approaches to
completing them. We use our weekly meetings to help keep track of deadlines approaching and if we are on
track to meet deadlines.

3.2 TASK DECOMPOSITION

The overall decomposition in tasks involve decomposing the high-level tasks between the
Rendering Engine and Game Design Teams. Each of the teams will be addressing the appropriate tasks to
complete the engine and design requirements respectively, along with ensuring communication between
teams will be performed to allow for newly defined design requirements to be met by the rendering team.

The game design team will be performing the top branch of the task decomposition tree while the
engine team will be operating on the tasks present in the bottom branch. The game design tasks (prototype
fundamentals and specifying design requirements) will be discussed and worked on in parallel, with the
design requirements communicated to the engine team for planning purposes. Additionally, the prototypes
will act as proof of concepts for the game itself prior to implementation over the engine.

The tasks assigned to the engine team heavily involve creating an engine that can support the
specific requirements of the design team, not including additional or redundant features, similar to those
found in industry standard engines such as Unity or Unreal. The underlying tasks are the general
implementation of the engine, while keeping requirements in mind for creation of a straightforward and
useful API that can be used during the game development phase.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Game Design TeamMilestones:

● Game Selection

○ Choosing genre and overarching theme of the final game design.
● Design Document

○ Once a game has been chosen, the next milestone would be creating an in-depth
document detailing the main features of the game; i.e., what core features we want
to have.

○ Main NPCs, Biomes, Genre.
○ Develop a larger story matching the genre and theme.

● Main Prototypes Creation
○ Implement the main features, and all the core features needed to make a minimal

viable product demo.
● Single Scene Creation

○ Integrating the core features into a singular scene.
● Functional Demo

○ Getting a demo of multiple scenes, demonstrating the main gameplay features and
gameplay loop.

Rendering Engine TeamMilestones:

● Math Determination
○ We need to determine which form of non-euclidean math we are going to

implement. This milestone is being able to render basic sprites, shapes, and
features in OpenGL.

● Basic Rendering
○ This milestone is being able to render basic sprites, shapes, and features in

OpenGL.
● Core Feature Implementation

○ Implement the following core features that are needed in the game link:
■ Sprites
■ Entities
■ Lighting
■ Collision

● Math Implementation
○ Ability to render the above in a non-Euclidean manner.

● Running Video Game on Engine
○ Ability to run all of the video game scenes created by the game design team

3.4 PROJECT TIMELINE/SCHEDULE

Overall Gantt Chart:

Specific Gantt charts:

By the end of this semester, our deliverables will be a rendering demo and a video game demo.
These deliverables will not be completed until the end of the semester as a large amount of build-up work
must be done. By the end of the year, our final deliverables will be a working rendering engine that is
supporting a video game. Because the video game deliverable depends on the working rendering engine
deliverable, the rendering engine should be mostly completed before the video game is completed.

These gantt charts show the proposed schedule for our project this semester. It is broken down into
two main groups we are separated into, Game Design and Rendering Engine. While we are still
communicating between groups about functionality and specifications, the tasks are split as the game
design team will do different tasks than the rendering engine team. Both teams start with doing project
research. The rendering engine will spend more time on the non-euclidean math in this part of the project
because they must use it more. The game design team will focus more on researching what makes a video
game suitable to create a good solution. Both teams have a part of their schedule with learning the software

due to most members not having any previous experience with these software technologies. Once each team
has a reasonable amount of time learning the software, we start implementing the core functionality of the
game/engine. We call these core functionality prototypes because they are separated and hopefully can be
tested independently. Once we have created these base prototypes, we want to combine them to make an
initial working prototype of what the game will look like / how the rendering engine will operate.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Game Design Risks:

Task Risk Probability Reason

Product
Research Misidentify user needs 0.1

Most of us are part of the user group and
know our own needs

Game
Type
Research Lack of Quality Research 0.1

Most of us are part of the user group and
know our own needs

Game
Resources
Research Using not state of the art tools 0

Have people on the team who know what
the start-of-the-art tools are

Idea
Generation Lack of Innovation Game Choice 0.6 See Mitigation

Game
Selection

Choosing a game with too big of a
scope 0.7 See Mitigation

Design
Document Bad design, so harder to build later 0.4

We are passionate about this project, so
the effort will be put into place to make
sure it is good

Lore
Generation

Uninteresting/too complex for the
user 0.3

Want the Game to be interesting, can take
inspiration from other games

World
Environme
nt Boring Gameplay 0.4

NPCs Lack of player immersion 0.4

Taking Inspiration from other games and
seeing how people react to other games
allow for better decision-making

Prototyping
Core
Mechanics The game will not work properly

Player
Movement The player will not be able to move 0.1 Basic Feature,

Monster Inconsistent Monster Behavior 0.2 Feature already implemented

Farming
Mechanic The game will to tedious 0.2

Experience from gaming taught us what
this should look like

Lighting Lose Player Interest 0.4
More critical because it is a core mechanic
of the game

Collision
Interactions between objects won't
work 0.2

It is important but left to the rendering
engine to figure out

Storage Boring Gameplay cycle 0.1
Prior Experience will dictate how we
design this

Integrating
Prototypes Buggy Experience

Single
Scene
Creation

Prototypes won't work with each
other leading to a delay 0.4

It is crucial to be able to demo/ explain to
an outside person. Integrating multiple
people's work is always a challenge

Multi
Scene
Creation

Player Information will not carry over
between scenes 0.4

If we can create one scene, making more
scenes is not as difficult. Have members
with experience

Basic User
Testing

The game does not feel enjoyable to
play 0.4

Testing to make sure the game feels
smooth. None of us are experts, so that
bugs will happen

Demo
Creation

Delays in previous steps may lead
to a lack of time

Creation of
Working
Demo

Too big of scope of the project,
cannot fit everything we wanted to
lead to not being done 0.7 See Mitigation

Testing
Working
Demo The game does not work 0.4

Testing to make sure the game feels
smooth. None of us are experts, so that
bugs will happen

Game Design Risk Mitigation:

● Idea Generation and Game Selection:

This is something that is high risk for us because it is an essential aspect of our project. Our
primary user need is enjoyment, so the game idea needs to be a well-polished one that can bring
high player immersion. This is a risk due to our group's limited experience. We have some players
with game design experience, but we have limited experience in the entire cycle, especially the
game idea generation.

We are mitigating this risk by doing extensive research on other games and taking inspiration from
those games. This way, we are not generating this entirely new game but a new spin on a type of
game we like. This leads to risk mitigation because we have proof that this type of game can have
high player immersion if done correctly.

● Creation of Working Demo:

This will be a high-risk task for this project for many reasons. The first reason is that we may get
behind on our schedule and may not be able to get the proper amount of time for this task this
semester. Another reason is that tasks require all of our previous tasks to work correctly and be able
to work together. We have integration tasks before this, but it still will be an issue for this task.

The main way we are going to mitigate this risk is by keeping a hard internal deadline for our
smaller tasks. We need to keep ourselves on track with the schedule we have to have the time we
allocate for this task to be there. If this is not possible, we will move some tasks that are more
auxiliary to the second semester to maintain the proper amount of time for this task. We also have a

list of resources we can use to help us complete this task on time and give us advice on how to go
about this task.

Rendering Engine Risks:

Task Risk Probability Reason

Product
Research Misidentify user needs 0.1

Most of us are part of the user group
and know our own needs

Engine
Research Lack of Quality Research 0.2

There is a limited number of rendering
codes, so easy to make sure we cover
everything

Math
Research Don’t understand the math 0.4

This is complex math, so time is needed
to process, understand and then
implement

Engine
Selection

Choosing an engine that has a high
learning curve adds delay to the
creation of features 0.1

Already Chosen before the project
started

Math
Selection

Certain non-euclidean spaces are
more complex, so math gets more
complicated and worse performance 0.2

Limiting number, choose one that would
be relatively simple to implement

Basic
Rendering

Don't properly learn to render, so
features take longer 0.6 See Mitigation

Creating
2-d shapes

Don't properly learn to render, so
features take longer 0.3

There are plentiful tutorials, so it should
not be a major issue

Basic
Ideas

Don't properly learn to render, so
features take longer 0.3

There are plentiful tutorials, so it should
not be a major issue

Basic Math
Concepts Don't understand the math 0.5 See mitigation

Prototyping
Delays core development if stuck on
this for too long

Sprites bad rendering and bloated assets 0.2
Bloated assets are not a worry until the
optimization of the engine,

Klein
Model

The engine won't meet technical
specs 0.9 See mitigation

Camera
Movement

Jagged Movement makes gameplay
less fun 0.4

Tutorials exist but might be an issue
given the different environments we are
building

Lighting Lose Player Interest 0.4
A core feature for Game Design needs
to work well

Assets
Bad code management and poor
optimization 0.3

Bloated assets are not a worry until the
optimization of the engine,

Input Cannot integrate well with game 0.2 I/O is well documented and can be

design tested easily

Complex
Issues

Lighting Loss of performance 0.2
A core feature for Game Design needs
to work well

Collision
System

Will not be able to implement game
design features 0.4 See mitigation

Math
Implement
ation

The engine will not meet technical
specifications 0.9 See mitigation

Demo
Creation

Delays in previous steps may lead
to a lack of time

Creation of
Working
Demo

Too big of the scope of the project,
cannot fit everything we wanted to
lead to not being done 0.5

It's always a worry if we try to do too
much, then we won't have anything to
demo this semester.

Testing
Working
Demo The engine does not work 0.5

This is new for all of us, we do not know
what to expect when it comes to
testing/verification of correctness.

Rendering Engine Risk Mitigations:

● Math

Our main risk for the rendering engine is being able to render non-euclidean math. None of us are
math majors. The computations to convert from Euclidean space into a non-euclidean space are not
trivial. This project is not just learning how to render but how to render in a new space. The main
risk is we are not doing the correct computations/conversions because we do not understand the
math properly enough.

Our primary risk mitigation strategy will be working together and sharing our knowledge together.
We are all independently trying to learn this math, then coming together as a group and comparing
and contrasting what we learned. By having multiple people learn from each other, we mitigate the
risk that we are learning incorrect information. We also have a list of resources that we can use in
case we get stuck and need advice on how to better our understanding.

3.6 PERSONNEL EFFORT REQUIREMENTS

Include a detailed estimate in the form of a table accompanied by a textual reference and explanation. This
estimate shall be done on a task-by-task basis and should be the projected effort in total number of
person-hours required to perform the task.

Game Design Hours:

Task Estimated Person Hours Reason

Product
Research 100 Want to spend 2-2.5 Weeks coming up with a good idea

Game Type
Research 20

Need to figure out what people like/dislike. Each member
puts in 5 hours so all have an idea

Game
Resources
Research 15

We need to know what resources we have, but this can be
done relatively quickly

Idea Generation 40
There should be four people = ~1 week time to create a
good initial plan

Game Selection 25
~ Another 6 hours to flesh out ideas and make sure solid
idea

Design
Document 85

The game needs to be interesting, so we need to spend
another 2 weeks making sure we have a good game

Lore Generation 25 Lore is important to keep player investment

World
Environment 30

A significant part of game design is exploration, needs an
interesting world

NPCs 30
Are an essential factor as to why certain games are
loved/hated, so we want to create good NPCs

Prototyping Core
Mechanics

Each Core mechanic is being given one person 1.5 weeks
to
Implement and Test

Player
Movement 15 1.5-2 weeks worth of work for one person

Monster 15 1.5-2 weeks worth of work for one person

Farming
Mechanic 15 1.5-2 weeks worth of work for one person

Lighting 15 1.5-2 weeks worth of work for one person

Collision 15 1.5-2 weeks worth of work for one person

Storage 15 1.5-2 weeks worth of work for one person

Integrating
Prototypes 200

Very important, should be spending a month on making a
solid game

Single Scene
Creation 40 ~ 1 week to integrate core mechanics

Multi Scene
Creation 80

~ 2 weeks to create more scenes and add more
mechanics. Allows for documentation and preparation for
the second semester

Basic User
Testing 80

~ 2 Weeks. There will be bugs, want time to test/ change
implementation based on feedback

Demo Creation 150

Want to make some polished demos to make a good
product
Also, building some extra time in case we get behind
schedule
~3 weeks

Creation of
Working Demo 80 ~2 weeks to get a polished demo

Testing Working
Demo 70 Want to make a smooth game

Rendering Engine Hours:

Task Estimated Person Hours Reason

Product
Research 70 ~ 2 weeks to get initial research done

Engine Research 20 Want to do it right the first time

Math Research 30
We need to spend more time understanding the
complexities

Engine Selection 5 Each member one one-hour meeting

Math Selection 5 Each member one one-hour meeting

Basic Rendering 80
Coupled with research = ~ 1 month time, so we have a
good base

Creating 2-d
shapes 25 Needed so we have baseline information

Basic Ideas 30 Time to explore OpenGL and get used to the software

Basic Math
Concepts 25 Math is hard

Prototyping Giving Member 1 week to complete each prototype

Sprites 10 1 week time

Klein Model 40
1 month because, most important, he needs to be
working extremely week

Camera
Movement 10 1 week time

Lighting 10 1 week time

Assets 10 1 week time

Input 10 1 week time

Complex Issues
These tasks may take longer than a week to complete
because of their complexities

Lighting 20
This may take more time to implement in a non-euclidean
space

Collision System 40 ~ 2 weeks with two people

Math
Implementation 80

~ everyone will probably spend 10-20 hours rendering
complex math

Demo Creation 200

Overestimate
Assuming previous tasks will take more time
Want to create a solid product
~ 1 month and some

Creation of
Working Demo 120

Testing Working
Demo 80

3.7 OTHER RESOURCE REQUIREMENTS

In terms of game development, additional resources will be needed as discovered during the
prototyping phase of game design development. The additional resources needed are:

● Sprites, Images

For the game development itself, using sprites is required for the game development, with sprites
allowing for simple drawing operations to be performed over shapes rendered with the engine. Due
to the fact that none of the team are art students, acquiring sprites and images that are created by
professionals would be preferable and result in an overall polished and presentable game.

● Libraries for Engine Development

In developing the game engine, libraries must be used to ensure consistent execution of code across
platforms. Due to the nature of creating windows and processing input to write textures and shapes
to the screen, various data structures must be used to copy data for use by the Graphics Card.
Writing custom code to perform these tasks will be impossible to do in addition to the general
engine development required to be done in the timeline of the course. Therefore, using established
libraries is incredibly important and useful.

● Student Innovation Center Game Lab Access

During the game development prototyping process in Unity, members of the game design team
have been unable to efficiently run prototypes on personal laptops. Gaining access to the Student
Innovation Center Game Development lab would greatly help with development and viewing or
creating the prototyping for Proof-of-Concepts.

● Unity Version Control

Using Unity Version Control (UVC) is necessary for the Game Design team as many of the game
assets are extremely large files and will get merge conflicts with other version control systems. The
Game Design team has been able to use the free version of UVC that allows up to 5GB of storage
space. However, it is possible that we need funding for the pro version of UVC as the final game may
exceed this 5GB limit.

Overall, art, libraries, game lab access, and UVC may be necessary resources for our project. Well
made sprites, and images are needed to satisfy the aesthetic user requirements. Libraries are necessary to
ensure we are not writing unnecessary code. Student Innovation Center lab access would assist members of
the game design team with prototyping on Unity. Finally, paying for UVC would increase the productivity of
our team.

